Poisson Mixture Regression Models for Heart Disease Prediction
نویسندگان
چکیده
Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model.
منابع مشابه
Using Regression based Control Limits and Probability Mixture Models for Monitoring Customer Behavior
In order to achieve the maximum flexibility in adaptation to ever changing customer’s expectations in customer relationship management, appropriate measures of customer behavior should be continually monitored. To this end, control charts adjusted for buyer’s/visitor’s prior intention to repurchase or visit again are suitable means taking into account the heterogeneity across customers. In the ...
متن کاملبه کارگیری بیز تجربی در تهیه نقشه جغرافیایی بروز بیماری سل در استان مازندران طی سالهای 90-1384
Background and purpose: Due to the increasing information about illnesses and deaths, classified map is of appropriate methods for analyzing this type of data. Standardized infection rates are commonly used in disease mapping but had many defects. This study aimed to compare the Poisson regression models and empirical Bayes models to prepare geographical map of tuberculosis incidence in Mazanda...
متن کاملComparison of Confidence and Prediction Intervals
1 2 A major focus for transportation safety analysts is the development of crash prediction models, a 3 task for which an extremely wide selection of model types are available. Perhaps the most common 4 crash prediction model is the negative binomial (NB) regression model. The NB model gained 5 popularity due to its relative ease of implementation and its ability to handle overdispersion in 6 c...
متن کاملA Novel Fuzzy-Genetic Differential Evolutionary Algorithm for Optimization of A Fuzzy Expert Systems Applied to Heart Disease Prediction
This study presents a novel intelligent Fuzzy Genetic Differential Evolutionary model for the optimization of a fuzzy expert system applied to heart disease prediction in order to reduce the risk of heart disease. To this end, a fuzzy expert system has been proposed for the prediction of heart disease. The proposed model can be used as a tool to assist physicians. In order to: (1) tune the para...
متن کاملAssessment of length of stay in a general surgical unit using a zero-inflated generalized Poisson regression
Background: The effective use of limited health care resources is of prime importance. Assessing the length of stay (LOS) is especially important in organizing hospital services and health system. This study was conducted to identify predictors of LOS among patients who were admitted to a general surgical unit. Methods: In this cross-sectional study, the sample included all patien...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016